
M.A.R.T.Y. Middleware Protocol - v2.0

November 10, 2023

This page documents the latest version of the M.A.R.T.Y. Middleware Protocol (MMP). Note that MMP version 1 can be

seen as a ‘subset’ of MMP version 2. They can be compatible, however new components in MMP 2 (such as variable payload

count) cannot be used to talk to MMP 1 clients.

The M.A.R.T.Y. Middleware Protocol is a framework for all of the M.A.R.T.Y. bundled applications to communicate with

each other. Note that it is a messaging protocol, not a file transfer protocol. As such, it does not necessarily care

about supporting completely arbitrary payloads, although it is designed in such a way that arbitrary payloads are

possible with various encoding methods.

MMP version 2 has been modified with lessons from the MVP. Making the interactions between clients tighter and faster

was of concern.

Changelog

• Packet size expanded from 1500 to 4096 bytes.

• SEND payload count changed from == 4 to >= 4, so that tokenising a message can be taken out of the application

level.

• DELIVERY message type changed to APPLICATION and expanded to consolidate validation of application-layer

operations, and avoid extra messaging.

• INVALID -> NOT_FOUND relocated to APPLICATION -> DELIVERY error.

Contents

1. Overview

2. Arbitrary Payloads

3. Message Types

4. Arguments

5. Payload Configurations

6. Examples

Protocol Specification

1. Overview

An MMP packet consists of the following:

1. Message type t

2. Metadata Argument 1 a1

3. Metadata Argument 2 a2

4. Payload/s p

5. Payload Termination e

6. Message Termination k

The MTU of MMP packets is 4096 bytes.

The message header is consisted of a type t and argument bytes a1 and a2, whose meaning depend on the type. It is a

set-size of 3-bytes. There can be n number of payloads p, where the exact number n is determined by the message type t

and direction of transmission.

NOTE: Payloads are terminated with the byte 0xFE and packets are terminated with the byte 0xFF. “Empty” data in MMP is

designated with 0x00, the ASCII NULL character. For example, an empty payload would be sent as 0x00FE.

NOTE: The minimum payload count is determined by the type and direction, and is always the same. The meaning of

payloads is determined by the arguments. Some message types can send a variable number of payloads.

With those special values excluded, the protocol allows for 252 message types, payloads to cover the entire ASCII

character range, and the collection of 2 bytes for arguments (excluding termination values) allows for up to 63,504

possible argument values per type.

A standard packet breakdown:

The INIT message type optionally allows for an authentication token. You can use it or not, seeing as it’s just the

base protocol auth method you can always implement a higher-level authentication method between your own clients when

they’ve all connected using SEND messages and payloads.

2. Arbitrary Payloads

An example encoding method which would allow for arbitrary payloads is to encode the raw hexadecimal data as their

ASCII representation, which fall into the supported character range. An example arbitrary payload encoding of the hex

http://localhost:1313/designs/mmp-2/#1-overview
http://localhost:1313/designs/mmp-2/#1-overview
http://localhost:1313/designs/mmp-2/#2-arbitrary-payloads
http://localhost:1313/designs/mmp-2/#2-arbitrary-payloads
http://localhost:1313/designs/mmp-2/#3-message-types
http://localhost:1313/designs/mmp-2/#3-message-types
http://localhost:1313/designs/mmp-2/#4-arguments
http://localhost:1313/designs/mmp-2/#4-arguments
http://localhost:1313/designs/mmp-2/#5-payload-configurations
http://localhost:1313/designs/mmp-2/#5-payload-configurations
http://localhost:1313/designs/mmp-2/#6-examples
http://localhost:1313/designs/mmp-2/#6-examples


representing the text ‘orca123’ can be seen below:

NOTE: It’s probably best to implement the encoding/decoding of this on the client-side rather than the server-side to

avoid server overhead.

NOTE: If you’re only transmitting ASCII text you wouldn’t need to bother with an encoding style like this; the full

ASCII range is supported in the base protocol.

3. Message Types

The current list of defined message types are detailed below.

Type Byte Description

INIT 0x01 Standard request for connection init

INVALID 0x02 Notify partner that the message type they sent was invalid

CONTERM 0x03 Notify partner that sender has terminated connection

SONAR 0x04 Ping partner to see if they’re still alive

SEND 0x05 Send a message to client(s)

APPLICATION 0x06 Inform partner of the outcome of application-layer events

QUERY 0x07 Query information about client(s)

NOTE: MMP has a SONAR message type, which is used as a periodic ping to see if a connection partner is still alive in

both directions. The exact interval is up to the implementation; this document does not specify a standard interval.

NOTE: There is an APPLICATION message type that informs the connection partner of the outcome of a valid request. This

will only be sent if the request was valid at a protocol-level and did not trigger an INVALID response.

A client uses the APPLICATION type in response to a SEND message. The server forwards a success or error (signified in

the argument) to the sending client to notify it of the application-layer status, or if the target client does not

respond at all.

4. Arguments

Argument behaviour is defined per message type. If a message type has no defined arguments, all messages transmit with

that type must have their arguments set to 0x00.

4.1 INIT

Type Arg Byte Description Direction

INIT INIT 0x0001 Client requests to initialise Client -> Server

INIT ACCEPT 0x0001 Init successful/accepted by server Server -> Client

4.2 CONTERM

Type Arg Byte Description Direction

CONTERM CLEAN 0x0001 Request a normal, clean connection termination

CONTERM SPAM 0x0002 Connection terminated due to too many invalid messages

CONTERM AUTH 0x0003 Connection terminated for authentication reasons Server -> Client

4.3 INVALID

Type Arg Byte Description Direction

INVALID TYPE 0x0001 Invalid t

INVALID LENGTH 0x0002 Message length before k exceeded max

INVALID ARGS 0x0003 Invalid a for t

INVALID PAYLOAD 0x0004 Invalid p for (t and a), e.g. data out of range

INVALID PAYLOAD_COUNT 0x0005 Invalid n for t

INVALID AUTH 0x0006 Authentication attempt was invalid Server -> Client



Type Arg Byte Description Direction

INVALID KEY_EXISTS 0x0007 Combination of requested name, priority and host already exist Server -> Client

INVALID RESERVED 0x0008 Reserved for future use

INVALID MESSAGE_ID 0x0009 Message ID was invalid Server -> Client

4.4 SEND

Type Arg Byte Description Direction

SEND DIRECT 0x0001 Send message to clients meeting specific criteria

SEND BROADCAST 0x0002 Send message to all clients

4.5 APPLICATION

Type Arg Byte Description Direction

APPLICATION SUCCESS 0x0001 Application operation completed successfully - everything else is an error

APPLICATION DELIVERY 0x0002 Delivery failed to complete

APPLICATION BUSY 0x0003 Client is busy with other requests

APPLICATION RANGE 0x0004 One or more bytes in the payload was out of range for app. layer

APPLICATION ENDPOINT 0x0005 The endpoint requested was invalid

APPLICATION VALUE 0x0006 One or more entire payloads were invalid

APPLICATION TOO_FEW 0x0007 Too few payloads provided for the endpoint

APPLICATION TOO_MANY 0x0008 Too many payloads provided for the endpoint

APPLICATION AUTH 0x0009 An application-layer authorisation error occurred

APPLICATION EXECUTE 0x000A Request was technically valid, but execution error occured

4.6 QUERY

Type Arg Byte Description Direction

QUERY CONN_NUMBER 0x0001 Client requests total number of connected clients Client -> Server

QUERY CONN_NUMBER 0x0001 Server provides the total number of connected clients Server -> Client

QUERY CLIENT_INFO 0x0002 Client requests information about a client Client -> Server

QUERY CLIENT_INFO 0x0002 Server provides information about a client Server -> Client

QUERY NOT_FOUND 0x0003 Client’s CLIENT_INFO request yielded no results Server -> Client

5. Payload Configurations

Payload configurations are determined by the direction of communication and the argument.

NOTE: If there is no section here for a message type (e.g. INVALID), the packet of that type must be terminated with

0xFF immediately after the arguments; no payloads.

NOTE: If the a column is left blank, the configuration applies to all arguments that aren’t individually specified.

NOTE: In the p configuration column, if a payload field is left blank, it should be set to 0x00 before being

terminated.

The meanings of the terms inside brackets:

• req: this is a required field

• opt: this is an optional field (if unspecified, set to 0x00 and terminate)

• opt_r: this is an optional field, however at least one of the payloads with this term must be present

5.1 INIT

Type n a p Configuration Direction

INIT 4 auth_token(opt),my_priority(req),my_host(req),my_name(req) Client -> Server

INIT 4 ,,, Server -> Client

5.3 INVALID

Type n a p Configuration Direction

INVALID 1 ,



Type n a p Configuration Direction

INVALID 1 MESSAGE_ID message_id(req)

5.2 SEND

Typ

e
n a p Configuration Direction

SEN

D

>=

5
DIRECT

message_id(req),target_priority(req),target_host(req),target_name(req),message(req

)…,message_n(opt)

Client ->

Server

SEN

D

>=

5
DIRECT

message_id(req),sender_priority(req),sender_host(req),sender_name(req),message(req

)…,message_n(opt)

Server ->

Client

SEN

D

>=

5

BROADCA

ST

message_id(req),target_priority(opt),target_host(opt),target_name(opt),message(req

)…,message_n(opt)

Client ->

Server

5.3 APPLICATION

Type n a p Configuration Direction

APPLICATION 1 message_id(req)

5.4 QUERY

Type n a p Configuration Direction

QUERY 3 CONN_NUMBER ,, Client -> Server

QUERY 3 CONN_NUMBER total_clients(req),, Server -> Client

QUERY 3 CLIENT_INFO target_priority(opt),target_host(opt_r),target_name(opt_r) Client -> Server

QUERY 3 CLIENT_INFO client_priority(req),client_host(req),client_name(req) Server -> Client

QUERY 3 NOT_FOUND target_priority(opt),target_host(opt_r),target_name(opt_r) Server -> Client

It should be noted that this protocol document does not enforce any constraints about what a server considers

“invalid”. It is up to the individual server to form and enforce these constraints. Behaviour when handling optional

flags is also up to the implementation. Hoff Industries provides a server implementation known as admiral, but is not

currently public for quality control reasons.

Message types and arguments are subject to change at any time with no notice. This page should be considered the only

formal definition of the M.A.R.T.Y. Middleware Protocol.

Have fun with MMP!


